PARALLEL STRUCTURED/UNSTRUCTURED SIMULATION OF MISSILE DYNAMIC FLOWFIELDS

A. Hosangadi, P.A. Cavallo, and S. Arunajatesan Combustion Research and Flow Technology, Inc.

174 North Main Street, P.O. Box 1150, Dublin, PA 18917 E-mail: hosangad@craft-tech.com

and

Dr. Kevin Kennedy Army Aviation and Missile Command Redstone Arsenal, AL

DoD HPCMP User's Group Conference 2002 University of Texas, Austin Austin, TX June 10-14, 2002

INTRODUCTION

- Focus of our work is high-fidelity, unsteady/transient simulations of problems related to missile dynamics
 - Dynamic multi-body motion
 - Aeroacoustic control using LES simulations
 - High speed gas/liquid interaction problems

Tools used are:

CRAFT: Structured, high-accuracy solver

CRUNCH: Multi-Element, unstructured solver for dynamic grid

motion

RELEVANT FEATURES OF CRAFT CFD NAVIER-STOKES CODE

	1D/2D/AXI/3D Finite-Volume Discretization
NUMERICS/	• Implicit, ADI and L/U, Higher-Order Upwind (Roe/TVD) Formulation
PARALLEL	Fully Implicit Source Terms/Boundary Conditions
PROCESSING	PNS Spatial Marching Capability
	Domain-Decomposition Parallel Architecture with MPI
	Shared Memory Parallelism
	Preconditioning Extensions
GRID FEATURES	Grid Dynamics to Account for Moving Boundaries
	Grid Patching/Blanking for Complex Geometries
	Solution-Adaptive Gridding and Grid Embedding
	Noncontiguous Grid Interfacing with Flux Preservation Across Domains
THERMO- CHEMISTRY	Multi-Component Real Gas Mixtures
	Finite-Rate Chemistry/Arbitrary Number of Species and Reactions
	Fully Implicit Source Term Linearization
MULTIPHASE FLOW	Nonequilibrium Particle/Droplet Solvers (Eulerian and Lagrangian
	Formulations)
TURBULENCE	• k-ε /EASM Formulations with Compressibility/Vortical Upgrades
	LES Subgrid Scale Models – Algebraic and One-equation

RELEVANT FEATURES OF CRUNCH CFD NAVIER-STOKES CODE

NUMERICS	Finite-Volume Roe/TVD Flux Construction, Vertex Storage
INTEGRATION	Explicit Four-Step Runge-Kutta, Implicit GMRES, Gauss-Seidel
GRID ELEMENTS	Tetrahedral, Hexahedral, Prismatic, Pyramid
PARALLEL PROCESSING CAPABILITIES	Domain Decomposition MPI, Independent Grids with Noncontiguous Interfacing, Automated Load Balancing
DYNAMIC GRID CAPABILITIES	Node Movement Solver (Implicit Elasticity Approach), Automated Embedding, Sliding Interfaces
GRID ADAPTION	Variable Element Grid Refinement using Delaunay and cell subdivision Procedures, Automated Load Balancing of Adapted Grid
THERMOCHEMISTRY	Multi-component Real Gas Mixtures, Finite-Rate Kinetics
TURBULENCE RANS/LES	• k-ɛ /EASM Formulations with Compressibility/Vortical Upgrades
	• LES Subgrid Scale Models – Algebraic and One-equation
	Algebraic (Smagorinsky) and Single Equation (k) SGS Models
MULTIPHASE FLOW	Nonequilibrium Particle/Droplet Solvers (Eulerian and Lagrangian Formulations)

DYNAMIC MULTI-BODY PROBLEMS

- Simulation of large scale separation scenarios accomplished through:
 - Mesh movement allowing the unstructured grid to deform a certain extent
 - Mesh adaption localized coarsening and refinement to correct distorted regions of the grid

- High performance computing / parallel issues:
 - Number of processors to simulate transient flow over realistic, complex geometries
 - 100-200 hours on 32-64 CPUs typical
 - Dynamic load balancing as the mesh is adapted and changes size is a key driver in simulation efficiency

MESH MOVEMENT

- Mesh represented as linearly elastic solid
- Equations of elasticity solved to propagate stresses created by motion of boundary surfaces
 - More robust than spring analogy technique
 - Velocity of nodes computed to update interior points
- Node movement performed in parallel
 - Velocity at interprocessor nodes broadcast to all processors
 - Subiteration to ensure adequate propagation of stresses

CRISP MESH ADAPTION CODE OVERVIEW

- A localized mesh adaptation code for tetrahedral or mixed tet/prism grids
- Enrichment of tetrahedra using Delaunay refinement procedure
- Coarsening accomplished by collapsing edges from the grid
- Mesh modification driven by modifying point spacing through cell quality and/or solution gradient criteria
- Recently extended to include refinement of mixed element grids with hexahedral regions

MESH DEFORMATION MATRIX ANALYSIS

$$[A] = [P][U]$$

- The element is transformed from time t₀ to t₁ through a deformation matrix
 [A]
- This deformation can be decomposed into rigid body modes and deformation modes [A] = [P][U]
 - If the element rotates without deforming, [P] is the identity matrix
 - If the element deforms without rotating, [U] is the identity matrix
- Eigenvalues of [P] provide useful information on element deformation and quality
 - Represent dilatation of the cell in each of three principal directions
 - Ratio of min/max eigenvalues (condition number) denotes extent of deformation
- These values may be used to directly drive mesh modifications

VISCOUS GRID MOTION FOR PRESCRIBED STORE TRAJECTORY

USE OF MATRIX CONDITION NUMBER IN DYNAMIC MESH ADAPTATION

OVERVIEW OF AIT SHROUD DEPLOYMENT

SHROUD SEPARATION, MACH NUMBER CONTOURS AND COMPUTATIONAL MESHES

SHROUD SEPARATION, PRESSURE CONTOURS

SHROUD SEPARATION, MACH NUMBER CONTOURS

LES OF HIGH SPEED FLOWS

- Unsteady dynamics
 - Aeroacoustics
 - Dynamic loading on aero-vehicles
- Numerical Methods
 - Schemes should handle fine scale turbulence and Shocks
 - Non-Dissipative Flux integration scheme
 - Fifth Order Scheme of Rai (1987)
 - Roe Flux construction
 - Shock/ Discontinuity Handling
 - Jameson type 2nd order term
 - Triggered by switch
 - Operates only at strong discontinuities

NUMERICAL METHODS

- Validation: LES of isotropic turbulence
 - Experiment of Comte-Bellot & Corrsin

Numerical Methods

- Validation : Shock Vortex Interaction
 - Switch triggers only along shock
 - Vortex Strength is preserved

Shock-Vortex Interaction

Numerical Methods

LARGE EDDY SIMULATIONS: COMPRESSIBLE BOUNDARY LAYERS

- High speed boundary layers
 - M \sim 3.0-4.0
 - $Re_{\delta} = 20,000-100,000$
 - "Recycling" method for boundary conditions

Profile from Recycle Station Rescaled and Reintroduced at Inlet

LARGE EDDY SIMULATIONS: COMPRESSIBLE BOUNDARY LAYERS

Mean U velocity with Van-Driest transformation

LARGE EDDY SIMULATIONS: COMPRESSION CORNER FLOWS

Instantaneous contours in the flow field (8°)

Mean skin-friction on the wall (24°)

Pressure distribution on the wall (8°)

Instantaneous contours of switch in the mid spanwise plane

LARGE EDDY SIMULATIONS: COMPRESSION CORNER FLOWS

LARGE EDDY SIMULATIONS: LATERAL DIVERT JET FLOWS

Instantaneous switch contours

Turbulent kinetic energy spectrum for the boundary layer

LARGE EDDY SIMULATIONS: LATERAL DIVERT JET FLOWS

LARGE EDDY SIMULATIONS : CAVITY FLOWS

- Predictions of Dynamic pressure loads
 - Store separation problems
 - Fatigue due to dynamic loading
 - Major observations
 - Steady "RANS type" upstream boundary layer
 - Highly unsteady "LES type" shear layer over the cavity
 - Large oscillations in all flow variables in the shear layer
 - Hybrid RANS-LES Modeling

Contours of Vorticity

Comparison of Dynamic Load Predictions with Experimental Data.

- LES of controlled cavity flows
 - Need to understand control mechanisms

Baseline Flow Field

Controlled Flow Field

Static Loads

Dynamic Loads

Turbulent KE Distribution

Reynolds Stresses

Baseline Case

Controlled Case

USG_2002

Passive Control

Effect of Control on Store Separation

- Introduced by Lumley (1967)
 - Decomposition based on mean-square (optimal)
 - Leads to an Eigen-value problem whose solution yields an optimal representation of the flow field
- POD Based Dynamical Model
 - Eigenfunctions written as linear combination of the instantaneous field

$$\phi_i^n(x) = \sum_{k=1}^M \psi^n(t_k) u_i(x, t_k)$$

- $u_i = (u(x_1,t_i),u(x_2,t_i),\ldots,u(x_N,t_i))^T$; ψ is the Eigen-solution of the M x M matrix (M=Ensemble Size)

$$C_{kl} = \frac{1}{M} \int_{D} u_i(x, t_k) u_i(x, t_l)$$

- Known as the Snapshot method
- A simple Galerkin projection on to the NS equations allows user to play-back flow field at a fraction of the cost of LES
 - ideal for studies of control system parameterics

- Model Analysis
 - Yields detailed information about different phenomena governing flow evolution
- Dynamical modeling
 - Recreated flow field can be used to prescribe BCs for other simulations
 - Control system studies to experiment with control strategies

Replaying Time Accurate Datasets:

One-Dimensional Example

Non-Dimensional Density

Non-Dimensional Velocity

Replaying Time Accurate Datasets:

Two-Dimensional Example

HIGH SPEED GAS/LIQUID METHODOLOGY

- Interfacing capturing scheme
 - Numerical procedure integrates through interface
- Physical equations of state given to each phase
- Acoustic characteristics of multi-phase mixture resolved accurately
 - Critical for pressure/blast wave interaction with liquid interface

GAS/LIQUID TEST PROBLEM

- Evolution of cylindrical pellet of liquid that gets released from missile
 - Liquid blob flying at Mach 2 initially
 - Strong aerodynamic interactions with surrounding atmosphere (shock wave generated ahead of liquid blob)
 - Droplets stripped from liquid to form a dens spray

FREE FLIGHT OF A CYLINDRICAL PELLET OF FLUID CONTOURS OF GAS MASS FRACTION

FREE FLIGHT OF A CYLINDRICAL PELLET OF FLUID

BREAKUP WITHOUT TRACKING OF THE BROKEN MASS

USG_2002

FREE FLIGHT OF A CYLINDRICAL PELLET OF FLUID BREAKUP WITH EULERIAN TRACKING OF THE PARTICULATE CONTINUUM

